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a b s t r a c t

Based on a momentum balance analysis, this paper basically presents and discusses experimental results
from fully developed turbulent plane-channel flows utilizing hot-wire anemometer. The paper stresses
the fact that in experimental investigations of two-dimensional shear flows it is difficult to obtain, with
reasonable accuracy, all turbulent quantities of interest to fluid mechanics researchers. This makes it
necessary to measure some relevant turbulent flow properties as a basis to drive others by utilizing
theoretically derived relationships obtained from the mean momentum equation. It is demonstrated that
both the turbulent Reynolds shear stress �qu01u02

� �
and the kinetic energy production �qu01u02ðdU=dyÞ

� �
for two-dimensional fully developed turbulent flows can be predicted in this way through detailed mean
velocity and mean pressure gradient measurements. In addition, some flow similarities and differences
among channel, pipe and boundary layer flows are discussed, revealing effects of flow geometry and
Reynolds number on the mean flow scaling.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

At high Reynolds numbers, it is difficult numerically to resolve
the small scales of turbulence. The same difficulties arise in exper-
imental investigations, since the size of most of the measuring sen-
sors are not small enough to resolve the small scales of the flow.
Hence, it has become general practice to apply combined numeri-
cal and experimental techniques, supported by analytical methods,
to investigate, reliably, high Reynolds number turbulent shear
flows. Such combined approaches turn out to be most successful
when a certain property of a turbulent flow is the aim of an inves-
tigation. Because of this, the authors have adopted the same
approach, investigating two-dimensional fully developed turbulent
plane-channel flows, particularly, the momentum transport and
the kinetic energy production.

Recently, such two-dimensional flows were intensively investi-
gated, see, e.g., [1–8] to obtain information on the structure of the
flow field. The experimental study of Laufer [9] was among the
most earliest experimental studies of such flows. Further investiga-
tions by Comte-Bellot [10], Clark [11], Eckelmann [12], Hussain
and Reynolds [13], Dean and Bradshaw [14], Gad-el-Hak and Ban-
dyopadhyay [15], Durst et al. [16], Sahay and Sreenivasan [17] and
Monkwetiz and Nagib [18] were also carried out with the aim of
investigating Reynolds number effect on the mean flow properties
of two-dimensional channel and pipe flows. Among the most the-

oretically oriented work, it is worth mentioning the work of
Millikan [19], Afzal and Yajnik [20], Panton [21,22], Wosnik et al.
[23], and Oberlack [24], proposing a number of velocity and Rey-
nolds shear stress distributions which are valid either in the inner
or the outer flow regions.

In spite of the above significant efforts, further research concerns
the scaling laws and their appropriate scaling parameters for the
mean velocity distribution and the momentum transport, and their
dependence on flow geometry and dimensionless numbers such as
the Reynolds number is still progressing. Therefore, the primary pur-
pose of the present work is to extend the authors previous studies,
with particular attention being given to the turbulent momentum
transport and the kinetic energy production in two-dimensional
fully developed turbulent plane-channel flows. Utilizing the general
form of the mean momentum equation for two-dimensional fully
developed turbulent flows, the distribution of both quantities are de-
duced. A Reynolds stress function proposed by Panton [21,22] for the
turbulent momentum transport was employed, representing the
authors’ data well when an appropriate value for the von Kármán
constant, i.e., j ¼ 0:37, obtained by Zanoun [25] for channel flow is
substituted into its functional relationship.

The main sections of the present paper are summarized as fol-
lows. Section 2 outlines the main governing equations, utilizing
Panton’s stress function to treat the turbulent momentum trans-
port and the kinetic energy production in plane-channel flows.
The normalized momentum transport and the kinetic energy
production data are presented in Section 3 in addition to some
normalized mean velocity profiles. This section presents the
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experimental data over a wide range of Reynolds number com-
pared with the current theoretical analysis, pointing out some sim-
ilarities and differences between the ducted, i.e., channel and pipe,
and the boundary layer flows. Section 4 summarizes the outcome
of the present study with some concluding remarks. This work
contributes hence to a problem once tackled in Prof. Spalding’s1 re-
search work since he made a nice contribution to the formulation of
the law of the wall.

2. The governing equations

When the time-averaged Navier–Stokes equations, i.e., the Rey-
nolds-averaged equations,

@

@xi
qUiUj � �qu0iu

0
j þ sij

� �h i
¼ � @p

@xj
þ qgj; ð1Þ

are adapted to two-dimensional fully developed turbulent plane-
channel flows, the following equation results:

�qu01u02 þ ldU
dy
¼ qu2

s 1� y
h

� �
: ð2Þ

The normalization of all terms in Eq. (2) with the following wall
characteristic velocity and length scale:

uc ¼ us ¼
ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
; lc ¼ m=us; ð3Þ

results in the following normalized form for the mean momentum
equation:

�u01u02
þ þ dUþ

dyþ
¼ 1� g; ð4Þ

where g ¼ yþ=Rþ is a notation for the normalized wall distance and
Rþ is defined as Rþ ¼ ush=m, recently, called the Kármán number.
The quantity h represents the channel half-height and m is the kine-
matic viscosity of the flowing fluid. When the Kármán number
tends to infinity, i.e., Rþ ! 1, Eq. (4) is simplified, in terms of wall
units, to represent the flow in the wall layer as follows:

�u01u02
þ ¼ 1� dUþ

dyþ
; ð5Þ

where the viscous shear stress effect cannot be neglected, see Fig. 1.
In the core region ðdUþ=dyþÞ � 1, hence Eq. (4) written in the

outer variables reads as

�u01u02
þ ¼ 1� g: ð6Þ

There have been various attempts to match the above inner [Eq. (5)]
and outer [Eq. (6)] regions of the flow; see, e.g., [26,20–22]. Panton
[21,22] proposed the following Reynolds stress function for two-
dimensional turbulent shear flows:

gðyþÞ ¼ 2
p

arctan
2jyþ

p

	 

1� exp � yþ

Cþ

	 
� �2

; ð7Þ

where Cþ is a constant that was recommended by Panton [21] to
have a value of 7.8 for j ¼ 0:41, and recently, 6.2 or 6.78 for
j ¼ 0:37, see [25] and [22], respectively. Eq. (7) was found to be va-
lid for all values of yþ and it permits the prediction of the turbulent
momentum transport for any Reynolds number as follows:

�u01u02
þ ¼ gðyþÞ � g; 0 6 g 6 1: ð8Þ

The way in which relationship Eq. (7) was derived satisfies assump-
tions to reproduce both Eqs. (5) and (6), see [21]. It was observed
also that Eq. (7) has the following general characteristics:

1. It is a smooth function and increases monotonically with
increasing the wall distance. It is differentiable with respect
to yþ and is defined in the following interval:

Nomenclature

B;C constants
g gravitational acceleration/Panton function
h channel half height
‘c viscous length scale
p pressure
P turbulent kinetic energy production
Ui streamwise velocity component
Uj normalwise velocity component
u01 streamwise velocity fluctuation
u02 normalwise velocity fluctuation
uc characteristic velocity scale
us wall friction velocity

Greek letters
q fluid density

l dynamic viscosity
m kinematic viscosity
j von Kármán constant
sw mean wall shear stress
g normalized wall distance

Superscript
+ nondimensional quantity/in wall units

Dimensionless numbers
Re Reynolds number
Rþ Kármán number

1 D.B. Spalding, A single formula for the law of the wall, ASME J. Appl. Mech. 83
(1961) 455–458.

Fig. 1. Magnitude of the four terms in the mean momentum equation, Eq. (4), in
two-dimensional fully developed turbulent plane-channel flow for Rþ ¼ 1167.
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gðyþÞ 2 ½0;1�: ð9Þ

2. It has an asymptotic behavior for yþ ! 1, to yield

gðyþÞjðyþ!1Þ ¼ 1: ð10Þ

3. It has a bounded value for yþ ! 0, i.e., gðyþÞjðyþ!0Þ ¼ 0 and, from
its definition, one can see that the following relationship holds:

@gðyþÞ
@yþ

jðyþ!0Þ ¼ 0;
@gðyþÞ
@yþ

jðyþ!1Þ ¼ 0: ð11Þ

2.1. Turbulent momentum transport and its peak position

One property of interest for the fully developed two-dimen-
sional turbulent channel flows is the peak value of the turbulent
momentum transport (i.e., �u01u02

þ
max) which as well as its position

is often discussed in the literature. From Eq. (6), one can see that

�u01u02
þjRþ!1 ¼ 1; g� 1; ð12Þ

which can be obtained also from Eq. (8) for the corresponding posi-
tions yþ > 1 and g� 1.

Panton’s correlation could also be employed to yield informa-
tion about the peak and its location of the distribution of
�qu01u02. From Eq. (8) one can write

d
dyþ

�u01u02
þ� �
¼ d

dyþ
gðyþÞ � 1

Rþ
ð13Þ

to obtain a relationship at which the peak turbulent momentum
transport occurs, i.e., for d �u01u02

þ
max

� �
=dyþ ¼ 0 Eq. (13) reduced to

d
dyþ

gðyþÞ ¼ 1
Rþ

; ð14Þ

where the differentiation of gðyþÞ reads as

d
dyþ

gðyþÞ¼4ð1�eð�yþ=CþÞÞ k
1�eð�yþ=CþÞ

p2þ4k2yþ2
þeð�yþ=CþÞ

pCþ
arctan

2kyþ

p

	 
" #
: ð15Þ

Solving Eq. (15) in connection with Eq. (14), numerically, provides
the location of the peak �u01u02

þ for different Kármán numbers
(see Fig. 7).

An alternative scenario to locate the position of the peak of
�u01u02

þ is to utilize the logarithmic velocity profile, Uþ ¼ 1=
j lnðyþÞ þ B, coupled with the mean momentum equation [i.e., Eq.
(4)], resulting in another expression for the location of �u01u02

þ
max:

yþj�u01u02
þ
max
¼

ffiffiffiffiffiffi
Rþ

j

s
: ð16Þ

In addition, based on a variety of data sources, Sreenivasan [27] pro-
posed the following relation for locating the peak �u01u02

þ
max:

yþj�u0
1

u0
2
þ
max
¼ 2

ffiffiffiffiffiffi
Rþ

p
: ð17Þ

Further processing of the mean momentum equation connected
with the logarithmic velocity profile results in the peak value of
�u01u02

þ:

�u01u02
þ
max ¼ 1� 2ffiffiffiffiffiffiffiffiffi

jRþ
p ) �u01u02

þ
maxjRþ!1 ¼ 1: ð18Þ

Both Eqs. (16) and (18) clearly indicate a direct dependence of the
peak position and the peak value of �u01u02

þ on both the von Kármán
constant, j, and the Kármán number, Rþ.

2.2. Turbulent kinetic energy production and its peak position

In wall-bounded turbulent shear flows, both the viscous and the
turbulent momentum transport terms in Eq. (4), i.e., ðdUþ=dyþÞ,

and ð�u01u02
þÞ, respectively, contribute to the turbulent energy

production. Hence the distribution of the turbulent kinetic energy
production can be calculated as follows:

Pþ ¼ �u01u02
þ dUþ

dyþ
; ð19Þ

and, by introducing the definition of �u01u02
þ from Eq. (4) into Eq.

(19), the turbulent kinetic energy production can be rewritten as
follows:

Pþ ¼ � dUþ

dyþ

 !2

þ dUþ

dyþ
� g

dUþ

dyþ
: ð20Þ

At the point where the viscous and the turbulent shear stresses are
equal, i.e., dUþ=dyþ ¼ �u01u02

þ, Eq. (4) turns to read as

dUþ

dyþ
¼ 1

2
½1� g�: ð21Þ

Hence, Eq. (20) can be rewritten as

Pþ ¼ 1
2
ð1� gÞ

� �2

: ð22Þ

For high enough Kármán number, g! 0, therefore one obtains

Pþjg!0 ¼
1
4
: ð23Þ

Alternatively, for the limit of Rþ ! 1, one can see from Eq. (4) that

dUþ

dyþ
¼ 1� �u01u02

þ� �� �
; ð24Þ

and in the overlap region, i.e., yþ � 1, for high Reynolds numbers
the turbulent momentum transport is equivalent to the stress func-
tion correlation [Eq. (7)], i.e., �u01u02

þ � gðyþÞ; see [21]. Hence, the
turbulent kinetic energy production can be reconstructed as a func-
tion of the stress function correlation gðyþÞ as follows:

PþjðRþ!1Þ ¼ gðyþÞ½1� gðyþÞ�: ð25Þ

Since gðyþÞ 2 ð0;1Þ, it follows that an inflection point exists at
gðyþÞjPþmax

¼ 1=2, corresponding to the position yþPmax
at which the

peak turbulent kinetic energy production, i.e., Pþmax ¼ 0:25, occurs.
Moreover, the location of the peak kinetic energy production,
yþPþmax

, can be obtained by the numerical solution of the following
equation that resulted from differentiating equation (25):

tan
p
4

1� exp �
yþPþmax

Cþ

 !" #�2
8<
:

9=
; ¼

2jyþPþmax

p
: ð26Þ

3. Experimental verification and discussion of results

One of the primary purposes of the present work is to extend
previous studies of the authors’ results obtained with particular
attention being given here to the distributions of the viscous and
the turbulent momentum transports and the turbulent kinetic en-
ergy production in two-dimensional fully developed turbulent
channel flows. Different complementary measuring techniques
were utilized [25], and supported by the numerical results of Mo-
ser et al. [6] to yield reliable information about the turbulent prop-
erties of plane-channel flows.

3.1. Viscous and turbulent momentum transport

In Fig. 2, the turbulent momentum transport data deduced from
the mean momentum Eq. (5) are compared with the predicted tur-
bulent momentum transport using the stress correlation function,

E.-S. Zanoun, F. Durst / International Journal of Heat and Mass Transfer 52 (2009) 4117–4124 4119
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i.e., Eq. (7). The comparison shows good agreement away from the
wall, but less agreement in the wall region, i.e., yþ < 50. A possible
reason for this disagreement close to the wall is that the value of
the constant Cþ ¼ 7:8 proposed by Panton [21], based on different
sets of data extracted from the literature, was not appropriate. By
looking at Panton’s [21] paper, a wide scatter among the experi-
mental data was observed because of inaccuracies in both the wall
skin friction data and the wall distance measurements. Another
reason for the scatter of the data might be attributed to the low
Reynolds number effect that resulted in higher values for both con-
stants of the logarithmic velocity profile, i.e., j ¼ 0:41 and B ¼ 5,
and consequently leading to higher value of the Panton’s constant
ðCþÞ. Hence an accurate estimation for the constant Cþ of Panton’s
stress function was of prime importance based on the new value
for the von Kármán constant, i.e., j ¼ 0:37, obtained for channel
flow [25]. The computed value of Cþ for different Reynolds num-
bers does not show in Fig. 3 a clear dependence on the Kármán
number. Using the least-squares curve fit for the data presented

in Fig. 3, a better value for the constant Cþ was found to be 6.18,
see also [25,22]. The stress function of Panton [Eq. (7)] was then
re-evaluated with the j ¼ 0:37 and Cþ ¼ 6:18, resulting in better
agreement with both the present computed and predicted turbu-
lent momentum transports for high Reynolds number in Fig. 4.

Based on the structure of the mean momentum equation, the
four-layer description of the wall-bounded shear flows is well de-
scribed and accepted in the fluid mechanics community [3], i.e.,

� laminar sublayer yþ 6 5,
� buffer layer 5 < yþ 6 30,
� logarithmic layer 30 < yþ 6 0:15 or 0:2Rþ,
� core region yþ > 0:15 or 0:2Rþ.

However, the inner limit of the logarithmic layer was found to be
yþ ¼ 150 for the channel flow and the layer for 30 6 yþ 6 150
was found to behave in a power manner [28] or called a meso layer
[23]. Wei et al. [3] adapted the four-layer description to turbulent
wall shear flows, revealing some important issues with the Kármán
number scaling properties of the mean momentum balance in both
the channel and pipe flows. The momentum transport in each of
the four different layers is conducted either by the viscous shear
stress, ldU=dy, or by the Reynolds shear stress, �qu01u02. The vis-
cous shear stress contributes considerably to shearing the flow,
mainly, quite close to the wall, and therefore it was observed that
dUþ=dyþ � �u01u02

þ over a large part of the flow, i.e., yþ > 100.
However, having a precise distribution of the viscous shear stress
in the different wall layers helps in investigating the effect of the
Reynolds number on the wall-bounded shear flows no matter
how high Rþ is. Eq. (2) underlines a direct relationship between
the gradient of the mean velocity distribution, i.e., the viscous
shear stress, and the turbulent momentum transport. Hence it
forms a basis to obtain information about �qu01u02, in principle,
from simple gradient measurements of both the mean velocity
and pressure along the channel test section. On the other hand,
earlier attempts have been made either to model or to measure
simultaneously the streamwise and normal fluctuations to obtain
�qu01u02. Gad-el-Hak and Brandyopadhyay [15] concluded that
the directly measured turbulence shear stress is on average 10%
smaller than the theoretical distribution deduced from the
momentum balance and the mean flow data, in agreement with
Akinlade [29] who found �11% uncertanity in estimating the

Fig. 2. The computed Reynolds shear stress distributions versus the wall distance
over a wide range of Reynolds number compared with Panton stress function [Eq.
(7)] in the channel flow.

Fig. 3. The Reynolds number effect on Panton’s constant Cþ of the Reynolds stress
function [i.e., Eq. (7)] in the channel flow.

Fig. 4. The computed Reynolds shear stress distributions in the wall layer over a
wide range of Reynolds number compared with Panton stress function [Eq. (7)]
utilizing the new constants j ¼ 0:37 and Cþ ¼ 6:18 in the channel flow.
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Reynolds shear stress from the dirtect measurements, see also [30].
Laufer [9] observed also that the total shearing stress obtained
from the direct fluctuations measurements was approximately
20% lower than that the computed values from the mean velocity
and the mean pressure gradient measurements. The uncertainity
in the direct measurements of the Reynolds shear stress arises
from the difficulity of carrying out simultaneous measurements
of both the streamwise and the normal velocity fluctuations with
adequate resolution, particularly, close to the wall, i.e., yþ 6 30
(i.e., y 6 500 lm in the present study). This part of the present
study therefore reviews some aspects on both the viscous and
the turbulent momentum transports distributions in the fully
developed two-dimensional plane-channel flows.

The viscous shear stress was obtained directly from the gradient
of the mean velocity distribution ðdU=dyÞ, however, the turbulent
momentum transport distribution was computed using the mean
momentum equation [i.e., Eq. (2)] through the mean velocity gra-
dient and the streamwise mean pressure gradient. The data were
normalized with the wall friction velocity, us, obtained either from
measurements of the mean pressure gradient or the oil film inter-
ferometry [25]. A selected sample of the normalized viscous and
turbulent momentum transport is presented in a semi-logarithmic
plot in Fig. 5. Closer inspection of the distribution of the viscous
and the turbulent shear stresses presented in Fig. 5 demonstrates
only three distinguished layers of the channel flow since no data
were available for yþ 6 5. The data are presented in a semi-loga-
rithmic plot to show clearly the importance of the thin region, rel-
ative to the rest of the total shear layer, close to the wall. This thin
layer is composed of two subregions, namely, a viscous/laminar
sublayer and the buffer region. In spite of the fact that there is
no currently available data for yþ 6 5, it could be supported by
the numerical data of Moser et al. [6] as well as the analysis of
the RANS equations. Although the viscous term ðdUþ=dyþÞ seems
to play a negligible role away from the wall, i.e., yþ � 1, as can
be seen from the figure, however, still has a considerable impor-
tance for describing the entire flow field [25]. From Fig. 5, it was
also observed that the Reynolds stress is equal to the viscous stress
at yþ � 12 where the maximum value of the turbulent energy pro-
duction, �u01u02ðdU=dyÞjmax, occurs as will be shown later. The near-
wall layer is then followed by a region of quasi-constant Reynolds
shear stress, see Fig. 6 for more clarity, for the cases of higher Rey-
nolds numbers which extends from yþ ¼ 30 (the old inner limit of

the log layer) or from yþ ¼ 150 (the new inner limit of the log
layer) to yþ ¼ 0:2Rþ where the momentum transport is mainly
accomplished by turbulence. Thereafter, an outer layer, i.e., core re-
gion, exists which is characterized by diminishing turbulent shear
stress, reaching zero at the channel centerline.

Data of the turbulent momentum transport ð�u01u02
þÞ are

presented in Fig. 6 over a wide range of Reynolds number,
180 6 Rþ 6 4783, including three cases from the DNS, Moser
et al. [6]. Fig. 6 is a log-log plot that permits closer inspection for
the effect of the Reynolds number on the turbulent momentum
transport, particularly in the wall region. As can be seen, good col-
lapse of the data was obtained, indicating Reynolds number inde-
pendence close to the wall, i.e., yþ < 100, for Rþ P 2	 103. On
the other hand, scaling the data with the wall variables do not col-
lapse the �u01u02

þ in the core region. For high enough Reynolds

numbers, i.e., Rþ P 2	 103, the �u01u02
þ approaches a maximum

value outside the viscous sublayer and shows approximately a con-
stant behavior along the overlap region as the Reynolds number
increases. Thereafter, the �u01u02

þ decreases in the channel core
region because of the streamwise mean pressure gradient.

To further proceed, the distance from the wall in the wall viscous
units, where the peak�u01u02

þjyþmax
occurs, is illustrated in Fig. 7. Fig. 7

shows good agreement among the authors’ experimental results and
data obtained from Eqs. (15)–(17). It is clear from Fig. 7 that the loca-
tion where the maximum value of �u01u02

þ occurs depends strongly
on the Kármán number. It moves away from the wall as the Kármán
number increases. Panton [21] interpreted the movement of the
location of the peak value of �u01u02

þ as a simple consequence of
the inner and outer layers mixing of different sizes as Rþ increases.
However for the current range of the Reynolds number, it was
observed that the location of the peak �u01u02

þjyþmax
lies outside the

log-law layer, considering the inner limit yþ ¼ 150 of the log range,
reflecting some lack of the assumptions that resulted in Eq. 16. The
magnitude of the peak of the turbulent momentum transport,
�u01u02

þjyþmax
, versus the Kármán number, Rþ, is provided in Fig. 8. It

can be seen that �u01u02
þjyþmax

increases with increasing the Reynolds

number and there is good agreement between the authors’ results
deduced from the mean momentum equation and the data extracted
from Panton’s relation. It is also believed that as the Reynolds num-
ber increases, the peak value of�u01u02

þ continues to increase, but the
limiting value is unity as the Reynolds number, asymptotically,

Fig. 5. The normalized viscous and Reynolds shear stresses versus the normalized
wall distance in the channel flow for Rþ ¼ 1167.

Fig. 6. Distributions of the present Reynolds shear stress over a wide range of
Reynolds number compared with the predicted Reynolds shear stress using Panton
stress function [Eq. (7)] in the channel flow for j ¼ 0:37 and Cþ ¼ 6:18.

E.-S. Zanoun, F. Durst / International Journal of Heat and Mass Transfer 52 (2009) 4117–4124 4121
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reaches infinity that was also deduced in section 2.1 [see Eqs. (12 and
18)].

3.2. Turbulent kinetic energy production

The Reynolds number effect on the distribution of the turbulent
kinetic energy production in channel flows is presented in Fig. 9.
The turbulent kinetic energy production was calculated via the tur-
bulent momentum transport ð�qu01u02Þ and the mean velocity gra-
dient ðdU=dyÞ. The results were normalized with the wall variables
(i.e., us and lc ¼ m=us) and then presented in dimensionless form
versus the normalized wall distance, yþ. Fig. 9 shows good collapse
of the turbulent kinetic energy production results and therefore a
Reynolds number independence can be concluded for high enough
Kármán number, i.e., Rþ > 103. In addition, a peak value was ob-
served at a fixed distance from the wall, i.e., yþ � 12, which agrees
well with Wei and Willmarth [30], Gad-el-Hak and Bandyopadhy-
ay [15], Sahay and Sreenivasan [17] and more recently with Laad-
hari [4]. Moreover, good agreement was obtained between the

present experimental results and the prediction of the turbulent
kinetic energy production utilizing Eq. (25). The position of the
maximum kinetic energy production was found to coincide with
the wall-normal position at which the turbulent and the viscous
shear stresses are equal, see Fig. 5. The peak value of the turbulent
kinetic energy production as can be seen from Fig. 9 was found to
be approximately 0.25, confirming Eq. (23).

3.3. Channel versus pipe and boundary layer flows

There are some remarkable flow similarities and differences be-
tween the ducted, i.e., rectangular channel and/or circular pipe,
and boundary layer of zero pressure gradient turbulent shear
flows, see; e.g., Sreenivasan [27]. These are two classes of shear
flows that are fundamentally different in a sense that channel
and pipe flows are just fully developed while boundary layers are
developing flows. However, a comparison among them can be
made, for instance, from Fig. 10 one can observe that the mecha-

Fig. 7. Location of the peak Reynolds shear stress versus the Kármán number in the
channel flow.

Fig. 9. The normalized turbulent kinetic energy production distributions versus the
normalized wall distance in the channel flow.

Fig. 10. The distributions of the Reynolds shear stress in the channel and the pipe
flows for almost two identical Reynolds numbers compared with the flat plate
turbulent boundary layer and the predicted Reynolds shear stress using Panton
stress relation.

Fig. 8. Behavior of the peak Reynolds shear stress versus the Kármán number in the
channel flow.

4122 E.-S. Zanoun, F. Durst / International Journal of Heat and Mass Transfer 52 (2009) 4117–4124



Author's personal copy

nism of the turbulent momentum transport in these two classes of
shear flows is quite similar in spite of the geometrical differences
between them. For both types of flows, the distribution of the tur-
bulent momentum transport shown in Fig. 10 for almost the same
Kármán numbers was found to be similar in the viscous and the
logarithmic layers, extending to the core/outer region, in contrast
to differences observed in the mean velocity distributions either
within the viscous sublayer or in the core/outer region, see
Fig. 11. In the channel flow, particularly, at low Reynolds number,
it was speculated by Wei and Willmarth [30] that the inner-region
structure from the opposing walls interacted where a constant
interchange of counter-rotating vorticity between the two inner
regions exist due to bursting, see also [14]. A similar phenomenon
in the turbulent boundary layer flow does not exist [31] because
there is only one wall and the pipe flow is even more complex,
see Wei and Willmorth [30] for more details.

Comparison of the present mean velocity profiles in the channel
with those of Zagarola and Smits [32], Monty [33], Pashtrapansaka
[34] and Zanoun [25] are presented in Fig. 11b for different Rey-
nolds numbers. However, the comparison made in Fig. 11a was
at similar Reynolds numbers to examine the details of the differ-
ences between these two ducted flows versus a selected case from
the zero pressure gradient flat plate boundary layer data of Österl-
und [35]. It appears that the superpipe results of Zagarola and

Smits [32] show good agreement with the channel flow results in
the overlap region, but there is less agreement in both the core re-
gion and within the viscous sublayer. It is worth noting that the
cases presented either in Fig. 10 or Fig. 11 from the data of Zagarola
and Smits [32] are near the lower end of their Reynolds number
range; however, the parameters of the logarithmic velocity profile
(j ¼ 0:436 and B ¼ 6:13) reported by them were derived from
their entire range of their Reynolds numbers. More recently, Perry
et al. [36] advanced a different interpretation of the superpipe data,
concluding that a more appropriate representation of the super-
pipe results leads to values of j ¼ 0:39 and B ¼ 4:0 for the logarith-
mic law parameters. Their alternative interpretation was based on
evidence extracted from the data of Zagarola and Smits [32] that
for a substantial range of higher Reynolds numbers, the flow in
the superpipe experiments was transitionally rough. The same
agreement and conclusion can also be made when the present
channel data are compared with the pipe flow data of Zanoun
[25], Monty [33], Pashtrapansaka [34]. Careful examination of the
results in Fig. 11 reveals also an often forgotten aspect of the flow
in the channel when contrasted with the pipe flow. The deviation
from the logarithmic law in the core region of the channel flow
is considerably less than that for the flow through pipes. This
suggests that the logarithmic law may be valid much closer to
the line of symmetry of the flow in the case of the channel. This
observation was made by Prandtl [37], Wei and Willmarth [30]
and Gad-el-Hak and Bandyopadhyay [15] many years ago, but is
often forgotten in the turbulence literature. The fact that the devi-
ation from the overlap region in the outer flow of the pipe is larger
than that for the channel may also be contrasted with the even lar-
ger deviation observed in the case of the boundary layer, i.e., the
wake component. This result is counter-intuitive when one com-
pares the three cases since, based on the relative size (volume) of
the outer flow, with respect to the vorticity-generating wall sur-
face, the channel may be assumed to fall between the boundary
layer and the pipe. The fact that the deviation in the outer flow
of the pipe falls between those of the other two is inconsistent with
the above argument. This result suggests that the channel flow
may have the least influence of the core flow on the wall region
in these wall-bounded turbulent shear flows, motivating for fur-
ther research in connection with clarifying the character of the out-
er layer (i.e., wake region) among the three types of the wall-
bounded shear flows.

4. Conclusions

Experimental data for two-dimensional fully developed turbu-
lent plane-channel flow, up to more than twice the highest Rey-
nolds numbers previously available, have been documented
based on two independent measurements of the wall shear stress
[25], resulting in the following conclusions:

The mean velocity distributions in both the viscous sublayer
and the core region show differences among the three wall-
bounded shear flows. The outer flow deviation from the logarith-
mic law is the smallest for the channel with the case of the pipe
remaining considerably smaller than the zero pressure gradient
boundary layers; these trends reflect the combined effects of flow
geometry and pressure gradient. This suggests that the logarithmic
law may be valid much closer to the line of symmetry of the flow in
the case of the channel flow.

This work permitted also valuable evaluation of the Kármán
number, Rþ, effect on both the viscous and the turbulent momen-
tum transport and the kinetic energy production. The turbulent
momentum transport data seems to scale with the inner wall vari-
ables, showing Reynolds number independence close to the wall,
i.e., yþ < 100, but only for high enough Kármán number. The

Fig. 11. The present mean velocity distribution for different Reynolds numbers in
the channel, the pipe and the flat plate turbulent boundary layer flows compared
with the logarithmic velocity profile.
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present set of data allowed also an accurate evaluation for Panotn’s
constant Cþ in his Reynolds stress function [Eq. 7]. It provided an
excellent agreement with the authors’ measurements when the
new coefficients j ¼ 0:37 and Cþ ¼ 6:18 were utilized. This readily
suggests that Panton’s correlation can be used to extend the
authors’ results in two-dimensional fully developed turbulent
plane-channel flows.

The mechanism of the turbulent momentum transport in both
ducted flows, i.e, the channel and the pipe, and the zero pressure
gradient boundary layer flows is fairly similar as Fig. 10 showed.
This observation came out in spite of the fact that the curvature
of the pipe inner wall makes the flow structure of the inner-region
from the different circumferential locations interacts at the center
of the pipe, resulting in a different turbulent structure than in the
channel as well as in the turbulent boundary layer flows where
there is only one wall, see [30,31,38,39].

A Reynolds number independence of the turbulent kinetic en-
ergy production was observed for Rþ > 103 when the data were
scaled with the inner wall variables and a peak value of approxi-
mately 0.25 was obtained at yþ � 12. The position of the peak
kinetic energy production was found to coincide with the wall-nor-
mal position at which the turbulent and the viscous momentum
transports are equal.

Further work, extending the two-dimensional channel flow of
high aspect ratio and for higher Reynolds number, at least twice
the highest Reynolds number achieved in the present experiments
and even higher, with high enough resolution, precise and inde-
pendent wall skin friction data is needed to further support the
present analysis.

Large channel test facility is therefore recommended [1] allow-
ing high Reynolds number measurements with good enough spa-
tial resolution in order to have a better understanding of the
physics of wall turbulence in rectangular ducts.
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